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1. Loss Functions

Def 2.1 (Loss Function) Let (X,A) be a m’able space and Y ⊂ R be a
closed subset. Then a function L : X× Y × R→ [0,∞) is called a loss
function , or simply a loss, if it is m’able.

L(x , y , f (x)) is the cost of predicting y by f (x) if x is observed.

Our goal is to have a small average loss for future unseen obs. (x , y).



1. Loss Functions

Def 2.2 - 2.3 (L-Risk and Bayes risk)
L : X× Y × R→ [0,∞) : loss ftn
P : p.m. on X× Y.
Then, for a m’able ftn f : X→ R , the L-Risk is defined by

RL,P(f ) :=

∫
X×Y

L(x , y , f (x))dP(x , y) =

∫
X

∫
Y

L(x , y , f (x))dP(y | x)dPX(x)

And, the minimal L-risk

R∗L,P := inf {RL,P(f ) | f : X→ R m′able}

is called the Bayes risk w.r.t. P and L .
In addition, a m’able f ∗L,P : X→ R with RL,P(f ∗L,P) = R∗L,P is called a
Bayes decision function.



1. Loss Functions

Example (Empirical L-Risk)
For a given sequence D := ((x1, y1), · · · , (xn, yn)) ∈ (X× Y)n , we write
D := 1

n

∑n
i=1 δ(xi , yi , f (xi )) . (D is the empirical measure).

The risk of a function f : X→ R w.r.t this measure is called the
empirical L-risk

RL,D(f ) :=
1
n

n∑
i=1

L(xi , yi , f (xi ))

• We assume that D is a seq. of i.i.d. obs. generated by P and f
satisfies RL,P(f ) <∞.
By L.L.N. , we see that RL,D(f )→ RL,P(f ) with high prob.



1. Loss Functions

Example2.4 (Standard binary classification)
The goal is to predict the label y by t if x is observed.
Let Y := {−1, 1} and P be an unknown distn on X× Y.
The classification loss Lclass : Y × R→ [0,∞) is defined by

Lclass := I(−∞,0](y sign t), y ∈ Y, t ∈ R.

RLclass ,P(f ) =

∫
X
{η(x)I(−∞,0)(f (x)) + (1− η(x))I[0,∞)(f (x))}dPX(x)

= P({(x , y) ∈ X× Y : sign f (x) 6= y}),
( η(x) := P(y = 1|x) )

R∗Lclass ,P =

∫
X
min{η, 1− η}dPX.



1. Loss Functions

Example2.5 (Weighted binary classification)
The goal is to predict the label y by t if x is observed.
Let Y := {−1, 1} and α ∈ (0, 1)..
The α-weighted classification loss Lα−class : Y × R→ [0,∞) is defined by

Lα−class(y , t) :=


1− α if y = 1 and t < 0
α if y = −1 and t ≥ 0
0 o.w.

RLα−class ,P(f ) = (1− α)

∫
f<0

ηdPX + α

∫
f≥0

(1− η)dPX,

( η(x) := P(y = 1|x) )

R∗Lα−class ,P =

∫
X
min{(1− α)η, α(1− η)}dPX.



1. Loss Functions

Example2.6 (Least squares regression)
The goal is to predict the label y ∈ R by t if x is observed.
The least squares loss LLS : Y × R→ [0,∞) is defined by

LLS(y , t) := (y − t)2, y ∈ Y, t ∈ R



1. Loss Functions

Def 2.7 - 2.8 (supervised/unsupervised Loss Function)
A function L : Y × R→ [0,∞) is called a supervised loss function ,
if it is m’able.
L can be canonically identified with the loss ftn L̄ : (x , y , t)→ L(y , t).

A function L : X× R→ [0,∞) is called a unsupervised loss function ,
if it is m’able.
L can be canonically identified with the loss ftn L̄ : (x , y , t)→ L(x , t).

RL,P(f ) = RL̄,P(f ) =

∫
X

L(x , f (x))dPX(x)

R∗L,P := R∗L̄,P



1. Loss Functions

Example2.9 (Density level detection Loss).
D := (x1, · · · , xn) ∼ i .i .d . Q (unkown)
The goal is to find the region where Q has relatively high concentration.
We assume that Q is abs. conti. w.r.t. some known reference measure µ.
Let g : X→ [0,∞) be the corresponding unknown density w.r.t. µ.
(Q = gµ)
(Find the density level sets {g > ρ} or {g ≥ ρ}.)

LLDL(x , t) := I(−∞,0)((g(x)− ρ)sign t)

RLLDL,µ(f ) := RLLDL,P(f ) =

∫
X

LDLD(x , f (x))dµ(x), PX = µ



1. Loss Functions

Example2.10 (Density estimation - Unsupervised Loss).
µ : known p.m. on X
g : X→ [0,∞) : unknown density w.r.t µ
The goal is to estimate the density g . The unsupervised loss
Lq : X× R→ [0,∞), q > 0, defined by

Lq(x , t) := |g(x)− t|q, x ∈ X, t ∈ R

RLq ,P(f ) =

∫
X
|g(x)− f (x)|qdµ(x), ∀f : X→ R ( m’able) PX = µ.
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2. Basic Properties of Loss Functions and Their Risks

Lemma2.11 shows that under some circumstances risk functionals (RL,P)
are m’able.

Lemma 2.11 (Measurability of risks) Let L : X×Y ×R→ [0,∞) be a loss
and F ⊂ L0(X) be a subset that is equipped with a complete and
separable metric d and its corresponding Borel σ-algebra. Assume that the
metric d dominates the pointwise convergence, i.e.,

lim
n→∞

d(f , fn) = 0 lim
n→∞

fn(x) = f (x), x ∈ X∀f , fn ∈ F .

Then the evaluation map (f , x)→ f (x) defined on F × X is measurable,
and consequently the map (x , y , f )→ L(x , y , f (x)) defined on X× Y ×F
is also measurable. Finally, given a distribution P on X× Y, the risk
function RL,P : F → [0,∞) is measurable.



2. Basic Properties of Loss Functions and Their Risks

Def 2.12 (Convexity of Loss functions) A loss L : X× Y × R→ [0,∞) is
called (strictly) convex if L(x , y , ·) : R→ [0,∞) is (strictly) convex
∀x ∈ X and y ∈ Y.

Lemma 2.13 (Convexity of risks) Let L : X× Y × R→ [0,∞) be a
(strictly) convex loss and P be a distribution on X× Y. Then
RL,P : L0(X)→ [0,∞] is (strictly) convex.



2. Basic Properties of Loss Functions and Their Risks

Def 2.14 (Continuity of Loss functions) A loss L : X× Y × R→ [0,∞) is
called (strictly) continuous if L(x , y , ·) : R→ [0,∞) is continuous
∀x ∈ X and y ∈ Y.

• In general, L(x , y , fn(x))→ L(x , y , f (x)),∀(x , y) does not imply
RL,P(fn)→ RL,P(f )

Lemma 2.15 (Lower semi-continuity of risks) Let L : X× Y × R→ [0,∞)
be a continuous loss, P be a distribution on X× Y, and (fn) ⊂ L0(PX) be
a seq. that converges to an f ∈ L0(PX) in prob. w.r.t. PX. Then we have

RL,P(f ) ≤ lim inf
n→∞

RL,P(fn)



2. Basic Properties of Loss Functions and Their Risks

Def 2.16 (Nemitski loss )
We call a loss L : X× Y × R→ [0,∞) a Nemitski loss if ∃ a m’able ftn
b : X× Y → [0,∞) and an increasing ftn h : [0,∞)→ [0,∞) s.t.

L(x , y , t) ≤ b(x , y) + h(|t|), (x , y , t) ∈ X× Y × R

We say that L is a Nemitski loss of order p ∈ (0,∞) if ∃ a constant
c > 0 s.t

L(x , y , t) ≤ b(x , y) + c |t|p, (x , y , t) ∈ X× Y × R

If P is a dist.n on X× Y with b ∈ L1(P), we say that L is a P-integrable
Nemitski loss.

• The notion of Nemitski losses will become of particular interest when
dealing with unbounded Y.(reg. problem)



2. Basic Properties of Loss Functions and Their Risks

Lemma 2.17 (Continuity of risks)
Let P be a distribution on X× Y and L : X× Y × R→ [0,∞) be a
continuous, P-integrable Nemitski loss. Then the following statements
hold:

i) Let fn : X→ R, n ≥ 1, be bdd m’able ftns for which ∃ a constant B > 0
with ||fn||∞ ≤ B ∀n ≥ 1. If the seq. (fn)→ f PX − a.s., then we have

lim
n→∞

RL,P(fn) = RL,P(f )

ii) The map RL,P : L∞(PX)→ [0,∞) is well-defined and continuous.
iii) If L is of order p ∈ [1,∞), then RL,P : Lp(PX)→ [0,∞) is well-defined
and continuous.



2. Basic Properties of Loss Functions and Their Risks

Def 2.18 ( Locally Lipschitz continuous )
A loss L : X×Y ×R→ [0,∞) is called locally Lipschitz continuous if
∀a ≥ 0 ∃ a constant ca ≥ 0 s.t.

sup
x∈X,y∈Y

|L(x , y , t)− L(x , y , t ′)| ≤ ca|t − t ′|, t, t ′ ∈ [−a, a].

For a ≥ 0, the smallest ca is denoted by |L|a,1.
If we have |L|1 := supa≥0|L|a,1 <∞, we call L Lipschitz continuous .

• Every convex function is locally Lipschitz continuous.
• Locally Lipschitz continuous loss L is a Nemitski loss.

Lemma 2.19 (Lipschitz continuity of risks). Let L : X×Y×R→ [0,∞) be
a locally Lipschitz continuous loss and P be a distn on X× Y. Then
∀B ≥ 0 and all f , g ,∈ L∞(PX) with ||f ||∞ ≤ B and ||g ||∞ ≤ B, we have

|RL,P(f )−RL,P(g)| ≤ |L||b,1 |̇|f − g ||L1(PX).



2. Basic Properties of Loss Functions and Their Risks

Def 2.20 ( Differentiability )
A loss L : X× Y × R→ [0,∞) is called differentiable if
L(x , y , ·) : R→ [0,∞) is differentiable ∀x ∈ X, y ∈ Y.
L′(x , y , t) denotes the derivative of L(x , y , ·) at t ∈ R

• For certain integrable Nemitski losses, we can actually establish the
differentiability of the associated risk.

Lemma 2.21 (Differentiability of risks).
Let P be a dist. on X× Y and L : X× Y × R→ [0,∞) be a diff’able loss
s.t. both L and |L′| : X× Y × R→ [0,∞) are P-integrable Nemitski
losses. Then the risk functional RL,P : L∞(PX)→ [0,∞) is Frechet
differentiable and its derivative at f ∈ L∞(PX) is the bdd linear operator
R′L,P(f ) : L∞(PX)→ R given by

R′L,P(f )g =

∫
X×Y

g(x)L′(x , y , f (x))dP(x , y), g ∈ L∞(PX).



2. Basic Properties of Loss Functions and Their Risks

Def 2.22 ( Clipped loss : Restriction to domains of the form
X× Y × [ −M,M] )
We say that a loss L : X× Y × R→ [0,∞) can be clipped at M > 0 if,
∀(x , y , t) ∈ X× Y × R, we have

L(x , y , “t) ≤ L(x , y , t),

where “t denotes the clipped value of t at ±M , that is

“t :=


−M if t < −M
t if t ∈ [−M,M]

M if t > M

We say that L can be clipped if it can be clipped at some M > 0

Lemma 2.23 (Clipped convex losses).
Let L : X× Y × R→ [0,∞) be a convex loss and M > 0. Then the
following statements are equivalent:
i) L can be clipped at M.
ii) ∀(x , y) ∈ X× Y, the function L(x , y , ·) : R→ [0,∞) has at least one
global minimizer in [−M,M]
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3. Margin-Based Losses for Classification Problems

• Both Lclass and Lα−calss are not convex, which may lead to
computational problems to minimize an empirical risk RLclass ,D(·) over
some set F .

• The empirical risk RL,D(·) of a surrogate loss function L is used in
SVMs. (Hinge loss).



3. Margin-Based Losses for Classification Problems

Def 2.24 ( Margin-based Loss )
A supervised loss L : Y × R→ [0,∞) is called margin-based if there
exists a representing function ϕ : R→ [0,∞) s.t.

L(y , t) = ϕ(yt), y ∈ Y, t ∈ R

Lemma 2.25 (Properties of margin-based losses).
Let L be a margin-based loss represented by ϕ
i) L is (strictly) convex. ⇐⇒ ϕ is (strictly) convex.
ii) L is continuous. ⇐⇒ ϕ is.
iii) L is (locally) Lipschitz continuous. ⇐⇒ ϕ is.
iv) L is convex. =⇒ It is locally Lipschitz continuous.
v) L is a P-integrable Nemitski loss for all m’able spaces X and all dist. P
on X× Y .



3. Margin-Based Losses for Classification Problems

Margin-Based Losses

Figure: The shape of the representing function ϕ for some margin-based loss
functions.



3. Margin-Based Losses for Classification Problems

Example 2.27 ( Hinge loss )
The hinge loss Lhinge : Y × R→ [0,∞) is defined by

Lhinge(y , t) := max{0, 1− yt}, y = ±1, t ∈ R

⇒ Lhinge is margin-based loss. It is convex and Lipschitz conti. with
|Lhinge |1 = 1. Finally, Lhinge can be clipped at M = 1.



3. Margin-Based Losses for Classification Problems

Example 2.28 ( Truncated least squares loss = Squared hinge loss )
The truncated least squares loss Ltrunc−ls is defined by

Ltrunc−ls(y , t) := (max{0, 1− yt})2, y = ±1, t ∈ R

⇒ Ltrunc−ls is margin-based loss. It is convex and Lipschitz constants are
|Ltrunc−ls |a,1 = 2a + 2, a > 0. Finally, Losstrunc−ls can be clipped at M = 1.



3. Margin-Based Losses for Classification Problems

Example 2.28 ( Logistic loss for classification )
The logistic loss for classification Lc−logit is defined by

Lc−logit(y , t) := ln(1 + exp(−yt)), y = ±1, t ∈ R

⇒ Lc−logit is margin-based loss. It is infinitely many times differentiable,
convex and Lipschitz conti. with |Lc−logit |1 = 1. Finally, Losstrunc−ls
cannot be clipped .



3. Margin-Based Losses for Classification Problems

Thm 2.31 (Zhang’s inequality )
Given a dist. P on X× Y, we write η(x) := P(y = 1|x), x ∈ X.
Let f ∗Lclass ,P be the Bayes classification ftn given by
f ∗Lclass ,P(x) := sign(2η(x)− 1), x ∈ X.

Then, ∀ m’able f : X→ [−1, 1], we have

RLhinge ,P(f )−R∗Lhinge ,P =

∫
X
|f (x)− f ∗Lclass ,P(x)|

Moreover, for every measurable f : X→ R, we have

RLclass ,P(f )−R∗Lclass ,P ≤ RLhinge ,P(f )−R∗Lhinge ,P
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4. Distance-Based Losses for Regression Problems

Def 2.32 (Distance-based loss )
We say that a supervised loss L : R× R→ [0,∞) is :
i) distance-based if there exists a representing function ψ : R→ [0,∞)
satisfying ψ(0) = 0 and

L(y , t) = ψ(y − t), y ∈ Y, t ∈ R;

ii) symmetric if Loss is distance-based and its representing function ψ
satisfies

ψ(r) = ψ(−r), r ∈ R

Lemma 2.33 (Properties of distance-based losses).
Let L be a distance-based loss with representing function ψ : R→ [0,∞).
i) L is (strictly) convex.⇐⇒ ψ is (strictly) convex.
ii) L is conti ⇐⇒ ψ is conti.
iii) L is Lipschitz conti.⇐⇒ ψ is Lipschitz conti.



4. Distance-Based Losses for Regression Problems

• Our goal is to investigate under which conditions on the dist. P a
distance-based loss ftn is a P-integrable Nemitski loss.

i) the analysis of the integrals of the form

CL,Q(t) :=

∫
R

L(y , t)dQ(y), Q := P(Y|x)

ii) analysis of the averaging w.r.t. PX

Def 2.34 (p-th moment )
For a distribution Q on R, the p-th moment, p ∈ (0,∞), is defined by

|Q|p := (

∫
R
|y |pdQ(y))1/p.

Its ∞-moment is defined by |Q|∞ := sup|suppQ|.



4. Distance-Based Losses for Regression Problems

Def 2.35 (growth behavior )
Let p ∈ (0,∞)andL : R× R→ [0,∞) be a distance-based loss with
representing function ψ. We say that Loss is of:
i) upper growth p if there is a constant c > 0 s.t.

ψ(r) ≤ (|r |p + 1), r ∈ R;

ii) lower growth p if there is a constant c > 0 s.t.

ψ(r) ≥ (|r |p − 1), r ∈ R;

iii) growth type p if L is of both upper and lower growth type p.



4. Distance-Based Losses for Regression Problems

• For convex distance-based loss ftns L , the representing ψ is locally
Lipschitz conti. on every interval [−r , r ].

• r → |ψ|[−r ,r ]|1, r ≥ 0 defines an increasing, non-negative function

Lemma 2.36 (Growth type and moments)
Let L be a distance-based loss with representing function ψ and Q be a
distribution on R. For p ∈ (0,∞), we then have:
i) If ψ is convex and lim|r |→∞ ψ(r) =∞, then L is of lower growth type 1.
ii) If ψ is Lipschitz conti., then L is of upper growth type 1.
iii) If ψ is convex, then ∀r > 0 we have

|ψ|[−r ,r ]|1 ≤
2
r
||ψ|[−2r ,2r ]||∞ ≤ 4|ψ|[−2r ,2r ]|1.

iv) If L is convex and of upper growth type 1, then it is Lipschitz
continuous.



4. Distance-Based Losses for Regression Problems

Lemma 2.36 (Properties of distance-based losses)
v) If L is of upper growth type p, then there exists a constant cL,p > 0
independent of Q s.t

CL,Q(t) ≤ cL,p(|Q|pp + |t|p + 1), t ∈ R.

L is a Nemitski loss of order p.
vi) If L is of lower growth type p, then there exists a constant cL,p > 0
independent of Q s.t

|Q|pp ≤ cL,p(CL,Q(t) + |t|p + 1), t ∈ R.and

|t|p ≤ cL,p(CL,Q(t) + |Q|pp + 1), t ∈ R.

vii) If L is of growth type p, then we have C∗L,Q <∞ if and only if
|Q‖p <∞.



4. Distance-Based Losses for Regression Problems

Def 2.37 ( average p-th moment )
For a distribution P on X× R, the average p-th moment, p ∈ (0,∞), is
defined by

|P|p := (

∫
X

∫
R
|y |pdP(x , y))1/p = (

∫
X
|P(|̇x)|ppdPX(x))1/p.

Its average 0-moment is defined by |P|0 := 1 and its average ∞-moment is
defined by |P|∞ := ess-supx∈X|P(|̇x)|∞.



4. Distance-Based Losses for Regression Problems

Lemma 2.38 (Average moments and risks).
Let L be a distance-based loss and P be a distribution onX× Y. For
p > 0, we then have:
i) If L is of upper growth type p, there exists a constant cL,p > 0 indep. of
P s.t., ∀ m’able f : X→ R, we have

RL,P(f ) ≤ cL,p(P|pp + ||f ||pLp(PX) + 1).

If, |P|p <∞ ,then L is a P-integrable Nemitski loss of order p,
and RL,P is well-defined and conti.



4. Distance-Based Losses for Regression Problems

Lemma 2.38 (Average moments and risks).
ii) If L is convex and of upper growth type p with p ≥ 1, then
∀q ∈ [p − 1,∞] with q > 0 ∃ a constant cL,p,q > 0 indep. of P s.t.,
∀ m’able f : X→ R andg : X→ R, we have

|RL,P(f )−RL,P(g)|
≤ cL,p,q(|P|p−1

q + ||f ||p−1
Lq(PX) + ||g ||p−1

Lq(PX) + 1)||f − g ||L q
q−p+1

PX .



4. Distance-Based Losses for Regression Problems

Lemma 2.38 (Average moments and risks).
iii) If L is lower growth type, ∃ a constant cL,p > 0 indep. of P s.t.,
∀ m’able f : X→ R, we have

|P|pp ≤ cL,p(RL,P(f ) + ||f ||pLP(PX) + 1) and

||f ||pLP(PX) ≤ cL,p(RL,P(f ) + |P|pp + 1).



4. Distance-Based Losses for Regression Problems

Margin-Based Losses

Figure: The shape of the representing function ψ for some distance-based loss
functions.



4. Distance-Based Losses for Regression Problems

Margin-Based Losses

Figure: The shape of the representing function ψ for some distance-based loss
functions.



4. Distance-Based Losses for Regression Problems

Example 2.39 ( p-th power absolute distance loss )
For p > 0, the p-th power absolute distance loss Lp−dist is the
distance-based loss function represented by

ψ(r) := |r |p, r ∈ R.

⇒ p = 2 : Lp−dist is the least squares loss.
⇒ p = 1 : Lp−dist is the absolute distance loss.
⇒ p ≥ 1 : Lp−dist is growth type p and Lp−dist is convex.
⇒ p > 1⇐⇒ Lp−dist is strictly convex .
⇒ p = 1⇐⇒ Lp−dist is Lipschitz conti.

Example 2.40 ( logistic loss for regression )
The distance-based logistic loss for regression Lr−logist is represented by

ψ(r) : − = −ln 4er

(1 + er )2 , r ∈ R.

⇒ Lr−logist is strictly convex and Lipschitz continuous, and consequently
Lr−logist is of growth type 1.



4. Distance-Based Losses for Regression Problems

Example 2.41 ( Huber’s loss )
For α > 0, Huber’s loss Lα−Hubor is the distance-based loss represented
by

ψ(r) :=

{
r2

2 if |r | ≤ α
α|r | − α2

2 o.w.

⇒ Lα−Hubor is convex but not strictly convex. Furthermore, it is Lipschitz
continuous, and thus Lα−Huboris of growth type 1. The derivative of ψ
equals the clipping operation for M = α.



4. Distance-Based Losses for Regression Problems

Example 2.42 ( ε-insensitive loss )
The ε-insensitive loss Lε-insens is represented by

ψ(r) := max{0, |r | − ε}, r ∈ R.

⇒ Lε-insens ignores deviances smaller than ε.
⇒ Lε-insens is Lipschitz conti. and convex but not strictly convex. It is of
growth type 1.
⇒ Lε-insens can be used to estimate the conditional median.

Example 2.42 ( Pinball loss )
For τ ∈ (0, 1), the pinball loss Lτ -pin is represented by

ψ(r) :=

{
−(1− τ)r , if r < 0
τ r if r ≥ 0

⇒ Lτ -pin is Lipschitz conti. and convex. (But for τ 6= 1/2 it is not symm.)
⇒ Lτ -pin can be used to estimate condi. τ -quantiles .
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