SVM (Chap2. Loss Functions and Their Risks)

Ingo et al. 2017

Presented by Jiin Seo February 19, 2018

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- 1. Loss Functions
- 2. Basic Properties of Loss Functions and Their Risks
- 3. Margin-Based Losses for Classification Problems
- 4. Distance-Based Losses for Regression Problems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Outline

- 1. Loss Functions
- 2. Basic Properties of Loss Functions and Their Risks
- 3. Margin-Based Losses for Classification Problems
- 4. Distance-Based Losses for Regression Problems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

- Def 2.1 (Loss Function) Let (X, A) be a m'able space and $Y \subset \mathbb{R}$ be a closed subset. Then a function $L : X \times Y \times \mathbb{R} \to [0, \infty)$ is called a *loss function*, or simply a *loss*, if it is m'able.
- L(x, y, f(x)) is the cost of predicting y by f(x) if x is observed.
- Our goal is to have a small average loss for future unseen obs. (x, y).

Def 2.2 - 2.3 (*L*-Risk and Bayes risk) L : $X \times Y \times \mathbb{R} \rightarrow [0, \infty)$: loss ftn P : p.m. on $X \times Y$. Then, for a m'able ftn $f : X \rightarrow \mathbb{R}$, the *L*-Risk is defined by

$$\mathcal{R}_{\mathrm{L},\mathbf{P}}(f) := \int_{\mathbf{X}\times\mathbf{Y}} \mathrm{L}(x,y,f(x)) d\mathbf{P}(x,y) = \int_{\mathbf{X}} \int_{\mathbf{Y}} \mathrm{L}(x,y,f(x)) d\mathbf{P}(y\mid x) d\mathbf{P}_{\mathbf{X}}(x)$$

And, the minimal L-risk

$$\mathcal{R}^*_{\mathrm{L},\mathbf{P}} := inf\{\mathcal{R}_{\mathrm{L},\mathbf{P}}(f) \mid f : \mathbf{X} \to \mathbb{R} \ m'able\}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

is called the *Bayes risk* w.r.t. P and L. In addition, a m'able $f_{L,P}^* : X \to \mathbb{R}$ with $\mathcal{R}_{L,P}(f_{L,P}^*) = \mathcal{R}_{L,P}^*$ is called a Bayes decision function.

Example (Empirical L-Risk) For a given sequence $\mathcal{D} := ((x_1, y_1), \dots, (x_n, y_n)) \in (\mathbf{X} \times \mathbf{Y})_n$, we write $\mathbf{D} := \frac{1}{n} \sum_{i=1}^n \delta(x_i, y_i, f(x_i))$. (**D** is the empirical measure). The risk of a function $f : \mathbf{X} \to \mathbb{R}$ w.r.t this measure is called the **empirical L-risk**

$$\mathcal{R}_{\mathrm{L},\mathbf{D}}(f) := \frac{1}{n} \sum_{i=1}^{n} \mathrm{L}(x_i, y_i, f(x_i))$$

• We assume that \mathcal{D} is a seq. of i.i.d. obs. generated by P and f satisfies $\mathcal{R}_{L,P}(f) < \infty$. By L.L.N., we see that $\mathcal{R}_{L,D}(f) \rightarrow \mathcal{R}_{L,P}(f)$ with high prob.

Example2.4 (Standard binary classification) The goal is to predict the label y by t if x is observed. Let $\mathbf{Y} := \{-1, 1\}$ and \mathbf{P} be an unknown distn on $\mathbf{X} \times \mathbf{Y}$. The *classification loss* $L_{class} : \mathbf{Y} \times \mathbb{R} \to [0, \infty)$ is defined by

$$L_{class} := I_{(-\infty,0]}(y \text{ sign } t), \quad y \in \mathbf{Y}, t \in \mathbb{R}.$$

$$\begin{aligned} \mathcal{R}_{\mathcal{L}_{class},\mathbf{P}}(f) &= \int_{\mathbf{X}} \{\eta(x) \mathbf{I}_{(-\infty,0)}(f(x)) + (1 - \eta(x)) \mathbf{I}_{[0,\infty)}(f(x)) \} d\mathbf{P}_{\mathbf{X}}(x) \\ &= \mathbf{P}(\{(x, y) \in \mathbf{X} \times \mathbf{Y} : \text{sign } f(x) \neq y\}), \\ (\eta(x) &:= \mathbf{P}(y = 1|x)) \end{aligned}$$

$$\mathcal{R}^*_{\mathrm{L}_{\mathit{class}},\mathbf{P}} = \int_{\mathbf{X}} \mathit{min}\{\eta, 1-\eta\} d\mathbf{P}_{\mathbf{X}}.$$

Example2.5 (Weighted binary classification) The goal is to predict the label y by t if x is observed. Let $\mathbf{Y} := \{-1, 1\}$ and $\alpha \in (0, 1)$.. The α -weighted classification loss $L_{\alpha-class} : \mathbf{Y} \times \mathbb{R} \to [0, \infty)$ is defined by

$$\mathcal{L}_{\alpha-class}(y,t) := \begin{cases} 1-\alpha & \text{if } y = 1 \text{ and } t < 0\\ \alpha & \text{if } y = -1 \text{ and } t \ge 0\\ 0 & \text{o.w.} \end{cases}$$

$$\begin{aligned} \mathcal{R}_{\mathcal{L}_{\alpha-class},\mathbf{P}}(f) &= (1-\alpha) \int_{f<0} \eta d\mathbf{P}_{\mathbf{X}} + \alpha \int_{f\geq 0} (1-\eta) d\mathbf{P}_{\mathbf{X}}, \\ (\eta(x) &:= \mathbf{P}(y=1|x)) \end{aligned}$$

$$\mathcal{R}^*_{\mathcal{L}_{\alpha-class},\mathbf{P}} = \int_{\mathbf{X}} \min\{(1-\alpha)\eta, \alpha(1-\eta)\} d\mathbf{P}_{\mathbf{X}}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Example2.6 (Least squares regression) The goal is to predict the label $y \in \mathbb{R}$ by t if x is observed. The least squares loss $L_{LS} : \mathbf{Y} \times \mathbb{R} \to [0, \infty)$ is defined by

$$\mathrm{L}_{LS}(y,t):=(y-t)^2, \quad y\in\mathbf{Y}, t\in\mathbb{R}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Def 2.7 - 2.8 (supervised/unsupervised Loss Function) A function $L: \textbf{Y} \times \mathbb{R} \rightarrow [0,\infty)$ is called a supervised loss function , if it is m'able.

L can be canonically identified with the loss ftn $\overline{L} : (x, y, t) \to L(y, t)$.

A function $L: X\times \mathbb{R} \to [0,\infty)$ is called a *unsupervised loss function* , if it is m'able.

L can be canonically identified with the loss ftn $\overline{L}: (x, y, t) \to L(x, t)$.

$$\begin{split} \mathcal{R}_{\mathrm{L},\mathbf{P}}(f) &= \mathcal{R}_{\bar{\mathrm{L}},\mathbf{P}}(f) = \int_{\mathbf{X}} \mathrm{L}(x,f(x)) d\mathbf{P}_{\mathbf{X}}(x) \\ \mathcal{R}_{\mathrm{L},\mathbf{P}}^* &:= \mathcal{R}_{\bar{\mathrm{L}},\mathbf{P}}^* \end{split}$$

Example2.9 (Density level detection Loss). $\mathcal{D} := (x_1, \dots, x_n) \sim i.i.d. \mathbf{Q} \text{ (unkown)}$ The goal is to find the region where \mathbf{Q} has relatively high concentration. We assume that \mathbf{Q} is abs. conti. w.r.t. some known reference measure μ . Let $g : \mathbf{X} \to [0, \infty)$ be the corresponding unknown density w.r.t. μ . $(\mathbf{Q} = g\mu)$ (Find the density level sets $\{g > \rho\}$ or $\{g \ge \rho\}$.)

$$\begin{split} & \mathcal{L}_{LDL}(x,t) := \mathbf{I}_{(-\infty,0)}((g(x) - \rho) \text{sign } t) \\ & \mathcal{R}_{\mathcal{L}_{LDL},\mu}(f) := \mathcal{R}_{\mathcal{L}_{LDL},\mathbf{P}}(f) = \int_{\mathbf{X}} \mathcal{L}_{DLD}(x,f(x)) d\mu(x), \quad \mathbf{P}_{\mathbf{X}} = \mu \end{split}$$

Example2.10 (Density estimation - Unsupervised Loss). μ : known p.m. on X $g : \mathbf{X} \to [0, \infty)$: unknown density w.r.t μ The goal is to estimate the density g. The unsupervised loss $L_q : \mathbf{X} \times \mathbb{R} \to [0, \infty), q > 0$, defined by

$$\begin{split} \mathrm{L}_q(x,t) &:= |g(x) - t|^q, \quad x \in \mathbf{X}, t \in \mathbb{R} \\ \mathcal{R}_{\mathrm{L}_q,\mathbf{P}}(f) &= \int_{\mathbf{X}} |g(x) - f(x)|^q d\mu(x), \quad \forall f : \mathbf{X} \to \mathbb{R} \text{ (m'able)} \quad \mathbf{P}_{\mathbf{X}} = \mu. \end{split}$$

Outline

1. Loss Functions

2. Basic Properties of Loss Functions and Their Risks

3. Margin-Based Losses for Classification Problems

4. Distance-Based Losses for Regression Problems

Lemma2.11 shows that under some circumstances risk functionals ($\mathcal{R}_{L,P}$) are m'able.

Lemma 2.11 (Measurability of risks) Let $L : X \times Y \times \mathbb{R} \to [0, \infty)$ be a loss and $\mathcal{F} \subset \mathcal{L}_0(X)$ be a subset that is equipped with a complete and separable metric d and its corresponding Borel σ -algebra. Assume that the metric d dominates the pointwise convergence, i.e.,

$$\lim_{n\to\infty} d(f,f_n) = 0 \qquad \lim_{n\to\infty} f_n(x) = f(x), x \in \mathbf{X} \forall f, f_n \in \mathcal{F}.$$

Then the evaluation map $(f, x) \rightarrow f(x)$ defined on $\mathcal{F} \times \mathbf{X}$ is measurable, and consequently the map $(x, y, f) \rightarrow L(x, y, f(x))$ defined on $\mathbf{X} \times \mathbf{Y} \times \mathcal{F}$ is also measurable. Finally, given a distribution \mathbf{P} on $\mathbf{X} \times \mathbf{Y}$, the risk function $\mathcal{R}_{L,\mathbf{P}} : \mathcal{F} \rightarrow [0, \infty)$ is measurable.

Def 2.12 (Convexity of Loss functions) A loss $L : \mathbf{X} \times \mathbf{Y} \times \mathbb{R} \to [0, \infty)$ is called (strictly) convex if $L(x, y, \cdot) : \mathbb{R} \to [0, \infty)$ is (strictly) convex $\forall x \in \mathbf{X}$ and $y \in \mathbf{Y}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Lemma 2.13 (Convexity of risks) Let $L : X \times Y \times \mathbb{R} \to [0, \infty)$ be a (strictly) convex loss and P be a distribution on $X \times Y$. Then $\mathcal{R}_{L,P} : \mathcal{L}_0(X) \to [0, \infty]$ is (strictly) convex.

Def 2.14 (Continuity of Loss functions) A loss $L : X \times Y \times \mathbb{R} \to [0, \infty)$ is called (strictly) continuous if $L(x, y, \cdot) : \mathbb{R} \to [0, \infty)$ is continuous $\forall x \in X$ and $y \in Y$.

• In general, $L(x, y, f_n(x)) \rightarrow L(x, y, f(x)), \forall (x, y)$ does not imply $\mathcal{R}_{L,\mathbf{P}}(f_n) \rightarrow \mathcal{R}_{L,\mathbf{P}}(f)$

Lemma 2.15 (Lower semi-continuity of risks) Let $L: X \times Y \times \mathbb{R} \to [0, \infty)$ be a continuous loss, P be a distribution on $X \times Y$, and $(f_n) \subset \mathcal{L}_0(\mathbf{P}_X)$ be a seq. that converges to an $f \in \mathcal{L}_0(\mathbf{P}_X)$ in prob. w.r.t. \mathbf{P}_X . Then we have

$$\mathcal{R}_{\mathrm{L},\mathbf{P}}(f) \leq \liminf_{n \to \infty} \mathcal{R}_{\mathrm{L},\mathbf{P}}(f_n)$$

Def 2.16 (Nemitski loss) We call a loss $L : \mathbf{X} \times \mathbf{Y} \times \mathbb{R} \to [0, \infty)$ a Nemitski loss if \exists a m'able ftn $b : \mathbf{X} \times \mathbf{Y} \to [0, \infty)$ and an increasing ftn $h : [0, \infty) \to [0, \infty)$ s.t.

 $L(x, y, t) \leq b(x, y) + h(|t|), \quad (x, y, t) \in X \times Y \times \mathbb{R}$

We say that L is a *Nemitski loss of order* $p \in (0,\infty)$ if \exists a constant c > 0 s.t

$$\mathrm{L}(x,y,t) \leq b(x,y) + c|t|^p, \quad (x,y,t) \in \mathbf{X} imes \mathbf{Y} imes \mathbb{R}$$

If P is a dist.n on $X \times Y$ with $b \in \mathcal{L}_1(P)$, we say that L is a *P*-integrable Nemitski loss.

• The notion of Nemitski losses will become of particular interest when dealing with unbounded **Y**.(reg. problem)

Lemma 2.17 (Continuity of risks)

Let P be a distribution on $X \times Y$ and $L : X \times Y \times \mathbb{R} \to [0, \infty)$ be a continuous, P-integrable Nemitski loss. Then the following statements hold:

i) Let $f_n : \mathbf{X} \to \mathbb{R}, n \ge 1$, be bdd m'able ftns for which \exists a constant $\mathbf{B} > 0$ with $||f_n||_{\infty} \le \mathbf{B} \ \forall n \ge 1$. If the seq. $(f_n) \to f \ \mathbf{P}_{\mathbf{X}} - a.s.$, then we have

$$\lim_{n\to\infty}\mathcal{R}_{\mathrm{L},\mathbf{P}}(f_n)=\mathcal{R}_{\mathrm{L},\mathbf{P}}(f)$$

ii) The map $\mathcal{R}_{L,\mathbf{P}} : L_{\infty}(\mathbf{P}_{\mathbf{X}}) \to [0,\infty)$ is well-defined and continuous. iii) If L is of order $p \in [1,\infty)$, then $\mathcal{R}_{L,\mathbf{P}} : L_{p}(\mathbf{P}_{\mathbf{X}}) \to [0,\infty)$ is well-defined and continuous.

Def 2.18 (Locally Lipschitz continuous) A loss $L : \mathbf{X} \times \mathbf{Y} \times \mathbb{R} \rightarrow [0, \infty)$ is called *locally Lipschitz continuous* if $\forall a \geq 0 \exists$ a constant $c_a \geq 0$ s.t.

$$\sup_{x\in \mathbf{X}, y\in \mathbf{Y}} |\mathrm{L}(x, y, t) - \mathrm{L}(x, y, t')| \leq c_{a}|t-t'|, \quad t, t' \in [-a, a].$$

For $a \ge 0$, the smallest c_a is denoted by $|L|_{a,1}$. If we have $|L|_1 := sup_{a \ge 0} |L|_{a,1} < \infty$, we call L Lipschitz continuous.

- Every convex function is locally Lipschitz continuous.
- Locally Lipschitz continuous loss L is a Nemitski loss.

Lemma 2.19 (Lipschitz continuity of risks). Let $L : X \times Y \times \mathbb{R} \to [0, \infty)$ be a locally Lipschitz continuous loss and P be a distn on $X \times Y$. Then $\forall B \ge 0$ and all $f, g, \in L_{\infty}(P_X)$ with $||f||_{\infty} \le B$ and $||g||_{\infty} \le B$, we have

$$|\mathcal{R}_{\mathrm{L},\mathsf{P}}(f) - \mathcal{R}_{\mathrm{L},\mathsf{P}}(g)| \leq |\mathrm{L}|_{|b,1}||f-g||_{\mathrm{L}_1(\mathsf{P}_{\mathsf{X}})}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Def 2.20 (Differentiability) A loss $L : \mathbf{X} \times \mathbf{Y} \times \mathbb{R} \to [0, \infty)$ is called **differentiable** if $L(x, y, \cdot) : \mathbb{R} \to [0, \infty)$ is differentiable $\forall x \in \mathbf{X}, y \in \mathbf{Y}$. L'(x, y, t) denotes the derivative of $L(x, y, \cdot)$ at $t \in \mathbb{R}$

• For certain integrable Nemitski losses, we can actually establish the differentiability of the associated risk.

Lemma 2.21 (Differentiability of risks).

Let **P** be a dist. on **X** × **Y** and L : **X** × **Y** × \mathbb{R} → [0, ∞) be a diff'able loss s.t. both L and |L'| : **X** × **Y** × \mathbb{R} → [0, ∞) are P-integrable Nemitski losses. Then the risk functional $\mathcal{R}_{L,\mathbf{P}}$: L_∞(**P**_X) → [0, ∞) is Frechet differentiable and its derivative at $f \in L_{\infty}(\mathbf{P}_{\mathbf{X}})$ is the bdd linear operator $\mathcal{R}'_{L,\mathbf{P}}(f)$: L_∞(**P**_X) → \mathbb{R} given by

$$\mathcal{R}'_{\mathrm{L},\mathbf{P}}(f)g = \int_{\mathbf{X}\times\mathbf{Y}} g(x)\mathrm{L}'(x,y,f(x))d\mathbf{P}(x,y), \quad g\in\mathrm{L}_{\infty}(\mathbf{P}_{\mathbf{X}}).$$

Def 2.22 (Clipped loss : Restriction to domains of the form $\mathbf{X} \times \mathbf{Y} \times [-\mathbf{M}, \mathbf{M}]$) We say that a loss $L : \mathbf{X} \times \mathbf{Y} \times \mathbb{R} \rightarrow [0, \infty)$ can be *clipped* at M > 0 if, $\forall (x, y, t) \in \mathbf{X} \times \mathbf{Y} \times \mathbb{R}$, we have

$$L(x, y, \hat{t}) \leq L(x, y, t),$$

where \hat{t} denotes the *clipped value* of t at $\pm M$, that is

$$\hat{t} := egin{cases} -\mathsf{M} & ext{if } t < -\mathsf{M} \ t & ext{if } t \in [-\mathsf{M},\mathsf{M}] \ \mathsf{M} & ext{if } t > \mathsf{M} \end{cases}$$

We say that ${\rm L}$ can be clipped if it can be clipped at some M>0

Lemma 2.23 (Clipped convex losses). Let $L : X \times Y \times \mathbb{R} \to [0, \infty)$ be a convex loss and M > 0. Then the following statements are equivalent: i) L can be clipped at M. ii) $\forall (x, y) \in X \times Y$, the function $L(x, y, \cdot) : \mathbb{R} \to [0, \infty)$ has at least one global minimizer in [-M, M]

Outline

- 1. Loss Functions
- 2. Basic Properties of Loss Functions and Their Risks
- 3. Margin-Based Losses for Classification Problems
- 4. Distance-Based Losses for Regression Problems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

- Both L_{class} and L_{α-calss} are not convex, which may lead to computational problems to minimize an empirical risk R_{L_{class},D(·)} over some set F.
- The empirical risk $\mathcal{R}_{L,D}(\cdot)$ of a surrogate loss function L is used in SVMs. (Hinge loss).

Def 2.24 (Margin-based Loss) A supervised loss $L : \mathbf{Y} \times \mathbb{R} \to [0, \infty)$ is called margin-based if there exists a representing function $\varphi : \mathbb{R} \to [0, \infty)$ s.t.

$$L(y,t) = \varphi(yt), \quad y \in \mathbf{Y}, t \in \mathbb{R}$$

Lemma 2.25 (Properties of margin-based losses). Let L be a margin-based loss represented by φ i) L is (strictly) convex. $\iff \varphi$ is (strictly) convex. ii) L is continuous. $\iff \varphi$ is. iii) L is (locally) Lipschitz continuous. $\iff \varphi$ is. iv) L is convex. \implies It is locally Lipschitz continuous. v) L is a P-integrable Nemitski loss for all m'able spaces X and all dist. P on $X \times Y$.

Margin-Based Losses

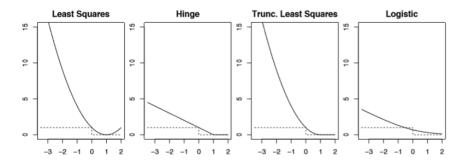


Figure: The shape of the representing function φ for some margin-based loss functions.

イロト イポト イヨト イヨト

æ

Example 2.27 (*Hinge loss*) The *hinge loss* $L_{hinge} : \mathbf{Y} \times \mathbb{R} \to [0, \infty)$ is defined by

$$L_{hinge}(y,t) := \max\{0, 1-yt\}, \quad y = \pm 1, t \in \mathbb{R}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $\Rightarrow L_{hinge}$ is margin-based loss. It is convex and Lipschitz conti. with $|L_{hinge}|_1 = 1$. Finally, L_{hinge} can be clipped at $\mathsf{M} = 1$.

Example 2.28 (*Truncated least squares loss* = Squared hinge loss) The *truncated least squares loss* $L_{trunc-ls}$ is defined by

$$\mathcal{L}_{trunc-ls}(y,t) := (max\{0,1-yt\})^2, \quad y = \pm 1, t \in \mathbb{R}$$

 $\Rightarrow L_{trunc-ls} \text{ is margin-based loss. It is convex and Lipschitz constants are} \\ |L_{trunc-ls}|_{a,1} = 2a + 2, a > 0. \text{ Finally, } Loss_{trunc-ls} \text{ can be clipped at } \mathbf{M} = 1.$

Example 2.28 (Logistic loss for classification) The logistic loss for classification $L_{c-logit}$ is defined by

$$\mathrm{L}_{\mathsf{c}-\mathit{logit}}(y,t) := \mathit{ln}(1 + exp(-yt)), \quad y = \pm 1, t \in \mathbb{R}$$

 $\Rightarrow L_{c-logit}$ is margin-based loss. It is infinitely many times differentiable, convex and Lipschitz conti. with $|L_{c-logit}|_1 = 1$. Finally, $Loss_{trunc-ls}$ cannot be clipped .

Thm 2.31 (Zhang's inequality) Given a dist. P on $X \times Y$, we write $\eta(x) := P(y = 1|x), x \in X$. Let $f^*_{L_{class},P}$ be the Bayes classification ftn given by $f^*_{L_{class},P}(x) := sign(2\eta(x) - 1), x \in X$.

Then, \forall m'able $f : \mathbf{X} \rightarrow [-1, 1]$, we have

$$\mathcal{R}_{\mathrm{L}_{hinge},\mathbf{P}}(f) - \mathcal{R}^{*}_{\mathrm{L}_{hinge},\mathbf{P}} = \int_{\mathbf{X}} \left| f(x) - f^{*}_{\mathrm{L}_{class},\mathbf{P}}(x)
ight|$$

Moreover, for every measurable $f : \mathbf{X} \to \mathbb{R}$, we have

$$\mathcal{R}_{L_{\textit{class}},\mathbf{P}}(f) - \mathcal{R}^*_{L_{\textit{class}},\mathbf{P}} \leq \mathcal{R}_{L_{\textit{hinge}},\mathbf{P}}(f) - \mathcal{R}^*_{L_{\textit{hinge}},\mathbf{F}}$$

Outline

- 1. Loss Functions
- 2. Basic Properties of Loss Functions and Their Risks
- 3. Margin-Based Losses for Classification Problems
- 4. Distance-Based Losses for Regression Problems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Def 2.32 (Distance-based loss) We say that a supervised loss $L : \mathbb{R} \times \mathbb{R} \to [0, \infty)$ is : i) distance-based if there exists a representing function $\psi : \mathbb{R} \to [0, \infty)$ satisfying $\psi(0) = 0$ and

$$L(y,t) = \psi(y-t), \quad y \in \mathbf{Y}, t \in \mathbb{R};$$

ii) symmetric if Loss is distance-based and its representing function ψ satisfies

$$\psi(r) = \psi(-r), \quad r \in \mathbb{R}$$

Lemma 2.33 (Properties of distance-based losses). Let L be a distance-based loss with representing function $\psi : \mathbb{R} \to [0, \infty)$. i) L is (strictly) convex. $\iff \psi$ is (strictly) convex. ii) L is conti $\iff \psi$ is conti. iii) L is Lipschitz conti. $\iff \psi$ is Lipschitz conti.

- Our goal is to investigate under which conditions on the dist. P a distance-based loss ftn is a P-integrable Nemitski loss.
- i) the analysis of the integrals of the form

$$\mathcal{C}_{\mathrm{L},\mathbf{Q}}(t) := \int_{\mathbb{R}} \mathrm{L}(y,t) d\mathbf{Q}(y), \quad \mathbf{Q} := \mathbf{P}(\mathbf{Y}|x)$$

ii) analysis of the averaging w.r.t. ${\sf P}_{{\sf X}}$

Def 2.34 (*p*-th moment) For a distribution \mathbf{Q} on \mathbb{R} , the p-th moment, $p \in (0, \infty)$, is defined by

$$|\mathbf{Q}|_{p} := (\int_{\mathbb{R}} |y|^{p} d\mathbf{Q}(y))^{1/p}.$$

Its ∞ -moment is defined by $|\mathbf{Q}|_{\infty} := sup|supp\mathbf{Q}|$.

Def 2.35 (growth behavior) Let $p \in (0, \infty)$ and $L : \mathbb{R} \times \mathbb{R} \to [0, \infty)$ be a distance-based loss with representing function ψ . We say that *Loss* is of: i) **upper growth** p if there is a constant c > 0 s.t.

$$\psi(r) \leq (|r|^p + 1), \quad r \in \mathbb{R};$$

ii) *lower growth* p if there is a constant c > 0 s.t.

$$\psi(r) \geq (|r|^p - 1), \quad r \in \mathbb{R};$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

iii) growth type p if L is of both upper and lower growth type p.

- For convex distance-based loss ftns L , the representing ψ is locally Lipschitz conti. on every interval [-r, r].
- $r \rightarrow |\psi_{|[-r,r]}|_1, r \ge 0$ defines an increasing, non-negative function

Lemma 2.36 (Growth type and moments) Let L be a distance-based loss with representing function ψ and **Q** be a distribution on \mathbb{R} . For $p \in (0, \infty)$, we then have: i) If ψ is convex and $\lim_{|r|\to\infty} \psi(r) = \infty$, then L is of lower growth type 1. ii) If ψ is Lipschitz conti., then L is of upper growth type 1. iii) If ψ is convex, then $\forall r > 0$ we have

$$|\psi_{|[-r,r]}|_1 \leq \frac{2}{r} ||\psi_{|[-2r,2r]}||_{\infty} \leq 4 |\psi_{|[-2r,2r]}|_1.$$

iv) If ${\rm L}$ is convex and of upper growth type 1, then it is Lipschitz continuous.

Lemma 2.36 (Properties of distance-based losses) v) If L is of upper growth type p, then there exists a constant $c_{L,p} > 0$ independent of **Q** s.t

$$\mathcal{C}_{\mathrm{L},\mathbf{Q}}(t) \leq c_{\mathrm{L},p}(|\mathbf{Q}|_p^p+|t|^p+1), \quad t\in\mathbb{R}.$$

L is a Nemitski loss of order p.

vi) If L is of lower growth type p, then there exists a constant $c_{L,p} > 0$ independent of **Q** s.t

$$egin{aligned} |\mathbf{Q}|^p_{
ho} &\leq c_{\mathrm{L}, oldsymbol{
ho}}(\mathcal{C}_{\mathrm{L}, \mathbf{Q}}(t) + |t|^p + 1), \quad t \in \mathbb{R}. \end{aligned}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

vii) If L is of growth type p, then we have $C^*_{L,\mathbf{Q}} < \infty$ if and only if $\|Q\|_p < \infty$.

Def 2.37 (average p-th moment)

For a distribution P on $X \times \mathbb{R}$, the *average p*-th moment, $p \in (0, \infty)$, is defined by

$$|\mathsf{P}|_{p} := (\int_{\mathsf{X}} \int_{\mathbb{R}} |y|^{p} d\mathsf{P}(x, y))^{1/p} = (\int_{\mathsf{X}} |\mathsf{P}(\dot{|}x)|_{p}^{p} d\mathsf{P}_{\mathsf{X}}(x))^{1/p}.$$

Its average 0-moment is defined by $|\mathbf{P}|_0 := 1$ and its average ∞ -moment is defined by $|\mathbf{P}|_{\infty} := \text{ess-sup}_{x \in \mathbf{X}} |\mathbf{P}(|x)|_{\infty}$.

Lemma 2.38 (Average moments and risks).

Let L be a distance-based loss and P be a distribution on $X \times Y$. For p > 0, we then have:

i) If L is of upper growth type p, there exists a constant $c_{L,p} > 0$ indep. of **P** s.t., \forall m'able $f : \mathbf{X} \to \mathbb{R}$, we have

$$\mathcal{R}_{\mathrm{L},\mathbf{P}}(f) \leq c_{\mathrm{L},p}(\mathbf{P}|_p^p + ||f||_{\mathrm{L}_p(\mathbf{P}_{\mathbf{X}})}^p + 1).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

If, $|\mathbf{P}|_p < \infty$, then L is a P-integrable Nemitski loss of order p, and $\mathcal{R}_{L,\mathbf{P}}$ is well-defined and conti.

Lemma 2.38 (Average moments and risks). ii) If L is convex and of upper growth type p with $p \ge 1$, then $\forall q \in [p-1,\infty]$ with $q > 0 \exists$ a constant $c_{L,p,q} > 0$ indep. of P s.t., \forall m'able $f : \mathbf{X} \to \mathbb{R}$ and $\mathbf{g} : \mathbf{X} \to \mathbb{R}$, we have

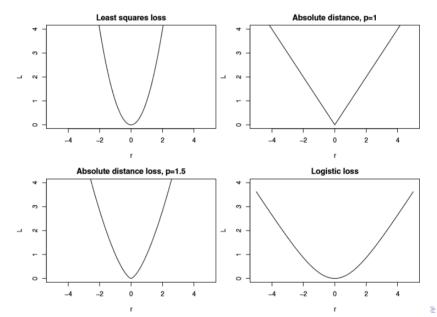
$$egin{aligned} &|\mathcal{R}_{\mathrm{L},\mathbf{P}}(f)-\mathcal{R}_{\mathrm{L},\mathbf{P}}(g)|\ &\leq c_{\mathrm{L},p,q}(|\mathbf{P}|_{q}^{p-1}+||f||_{\mathrm{L}_{q}(\mathbf{P}_{\mathbf{X}})}^{p-1}+||g||_{\mathrm{L}_{q}(\mathbf{P}_{\mathbf{X}})}^{p-1}+1)||f-g||_{\mathrm{L}_{rac{q}{q-p+1}}}\mathbf{P}_{\mathbf{X}}. \end{aligned}$$

Lemma 2.38 (Average moments and risks). iii) If L is lower growth type, \exists a constant $c_{L,p} > 0$ indep. of P s.t., \forall m'able $f : \mathbf{X} \to \mathbb{R}$, we have

$$\begin{split} |\mathbf{P}|_{p}^{p} &\leq c_{\mathrm{L},p}(\mathcal{R}_{\mathrm{L},\mathbf{P}}(f) + ||f||_{\mathrm{L}_{\mathbf{P}}(\mathbf{P}_{\mathbf{X}})}^{p} + 1) \quad \text{and} \\ ||f||_{\mathrm{L}_{\mathbf{P}}(\mathbf{P}_{\mathbf{X}})}^{p} &\leq c_{\mathrm{L},p}(\mathcal{R}_{\mathrm{L},\mathbf{P}}(f) + |\mathbf{P}|_{p}^{p} + 1). \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Margin-Based Losses



. nac

Margin-Based Losses

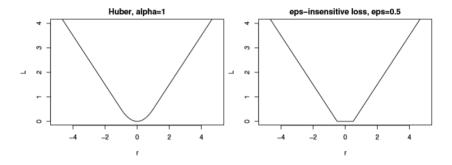


Figure: The shape of the representing function ψ for some distance-based loss functions.

イロト 不得 トイヨト イヨト

Ξ.

Example 2.39 (*p-th power absolute distance loss*) For p > 0, the *p-th power absolute distance loss* L_{p-dist} is the distance-based loss function represented by

 $\psi(\mathbf{r}) := |\mathbf{r}|^{\mathbf{p}}, \quad \mathbf{r} \in \mathbb{R}.$

 $\begin{array}{l} \Rightarrow \ p=2: \mathrm{L}_{p-dist} \text{ is the least squares loss.} \\ \Rightarrow \ p=1: \mathrm{L}_{p-dist} \text{ is the absolute distance loss.} \\ \Rightarrow \ p\geq 1: \mathrm{L}_{p-dist} \text{ is growth type } p \text{ and } \mathrm{L}_{p-dist} \text{ is convex.} \\ \Rightarrow \ p>1 \Longleftrightarrow \mathrm{L}_{p-dist} \text{ is strictly convex }. \\ \Rightarrow \ p=1 \Longleftrightarrow \mathrm{L}_{p-dist} \text{ is Lipschitz conti.} \end{array}$

Example 2.40 (logistic loss for regression) The distance-based logistic loss for regression $L_{r-logist}$ is represented by

$$\psi(r):=-lnrac{4e^r}{(1+e^r)^2},\quad r\in\mathbb{R}.$$

 $\Rightarrow L_{r-logist} \text{ is strictly convex and Lipschitz continuous, and consequently} L_{r-logist} \text{ is of growth type 1.}$

Example 2.41 (Huber's loss) For $\alpha > 0$, Huber's loss $L_{\alpha-Hubor}$ is the distance-based loss represented by

$$\psi(\mathbf{r}) := \begin{cases} \frac{r^2}{2} & \text{if } |\mathbf{r}| \le \alpha\\ \alpha |\mathbf{r}| - \frac{\alpha^2}{2} & \text{o.w.} \end{cases}$$

 \Rightarrow L_{α -Hubor} is convex but not strictly convex. Furthermore, it is Lipschitz continuous, and thus L_{α -Hubor} is of growth type 1. The derivative of ψ equals the clipping operation for $\mathbf{M} = \alpha$.

Example 2.42 (ϵ -insensitive loss) The ϵ -insensitive loss L_{ϵ -insens is represented by

$$\psi(\mathbf{r}) := \max\{\mathbf{0}, |\mathbf{r}| - \epsilon\}, \quad \mathbf{r} \in \mathbb{R}.$$

 \Rightarrow L_{ϵ -insens} ignores deviances smaller than ϵ .

 $\Rightarrow L_{\epsilon\text{-insens}}$ is Lipschitz conti. and convex but not strictly convex. It is of growth type 1.

 $\Rightarrow L_{\varepsilon\text{-insens}}$ can be used to estimate the conditional median.

Example 2.42 (*Pinball loss*) For $\tau \in (0, 1)$, the *pinball loss* $L_{\tau-pin}$ is represented by

$$\psi(r) := \begin{cases} -(1-\tau)r, & \text{if } r < 0\\ \tau r & \text{if } r \ge 0 \end{cases}$$

 \Rightarrow L_{τ -pin} is Lipschitz conti. and convex. (But for $\tau \neq 1/2$ it is not symm.) \Rightarrow L_{τ -pin} can be used to estimate condi. τ -quantiles.

(ロ) (型) (E) (E) (E) (O)